ON THE CYCLOPROPYL CONJUGATION IN BENZO[a]SPIRO[2,5]OCTA-1,4-DIENE-3-ONE¹⁾

P. Rys, P. Skrabal and H. Zollinger

Department of Industrial and Engineering Chemistry,

Swiss Federal Institute of Technology (ETH),

Zurich

(Received in UK 22 March 1971; accepted in UK for publication 19 April 1971)

The recent paper on aromaticity via cyclopropyl conjugation by Clark and Fiato²⁾ prompts us to report on the electronic structure of the title compound 1. It was prepared for comparison with Winstein's spiro $[2,5]$ octa-1,4-diene-3-one $(2)^3$ and $\text{spiro[anthrone-I0,1'-cyclelopropane]} (3)^{4}$.

The NMR spectrum of $\frac{1}{2}$ in CDCl₃ shows a multiplet at 1.71 ppm for the cyclopropyl protons. Similar chemical shifts were reported for these protons in 2 (1.69 ppm, singlet, in CDC1₃) and 3 (1.84 ppm, singlet, in CDC1₃). These chemical shifts are about 1 ppm downfield from the absorption of the cyclopropyl protons in saturated spiranes. It is well established that the protonated cyclopropyl spirodienones $\frac{2}{n}$ and $\frac{3}{n}$ exist as static bridged systems in which the charge delocalisation extends over the cyclopropane rings⁵). In our opinion the chemical shifts of the unprotonated species must be interpreted in terms of a contribution of aromatic forms (e.g. symbolized by $\underline{\text{1b}}$) to the ground state of the molecules⁶⁾.

The multiplet for the two pairs of nonequivalent cyclopropyl protons of $\underline{1}$ in CDCl₃ becomes a singlet in CD_2OD and is shifted to 1.82 ppm. The protons in positions 4 and 5 which are equivalent in CDCl₃ (singlet at 6.48ppm) show a quartet (J_{4,5}=9cps) at 6.59 ppm in CD_3 OD. Both changes can be explained by a bigger contribution of the mesomeric form $\underline{\text{1b}}$ which assumes more importance in the more polar solvent. In $\underline{\text{1b}}$ all four cyclopropyl protons are exposed to the magnetic field induced by the diamagnetic ring current in naphthalene and may therefore become equivalent. The protons H_A and H_5 may become nonequivalent because they become aromatic protons in a position ortho to a positive and negative substituent.

In addition, the electronic spectrum of \pm resembles more to that of a naphthalene derivative than to the spectrum of a cross conjugated ketone (see Table 1). The tendency of the protonated species to add nucleophiles under ring opening decreases in the order $\frac{2}{\pi} > \frac{1}{\pi} > \frac{3}{2}$. This is in accordance with the expected stability of these species.

	λ_{max} (log ϵ)	solvent
	282(4.36), 329(4.05), 336(sh)	CHC1 ₂
	225(4.11), 258(4.14), 310(3.90)	C_2H_5OH
7) CH,	256(4.24)	C_2H_5OH
$\mathbf{1}_{\text{-naphthol}}$ 8)	233(4.52), 295.5(3.71), 323(3.43)	C_2H_5OH

Table 1. Electronic spectra

REFERENCES

- 1) The title compound was synthesized in the course of the Ph.D. thesis of R. Vogelsanger, ETH, 1970.
- 2) R.A. Clark and R.A. Fiato, J. Amer. Chem. Soc. 92, 4736 (1970).
- 3) R. Baird and S. Winstein, ibid. 85, 567 (1963).
- 4) L. Eberson and S. Winstein, ibid. 87, 3506 (1965).
- 5) See for example: J.W. Pavlik and N. Filipescu, Chem. Commun.[London] <u>1970</u>, 709.
- 6) For a more detailed discussion see Ref. 2).
- 7) R.P. Mariella and R.R. Raube, J. Amer. Chem. Soc. 74 , 521 (1952).
- 8) C. Daglish, ibid. 72, 4859 (1950).